“前沿进展”栏目,旨在介绍科研人员在光学领域发表的具有重要学术、应用价值的论文,促进研究成果的传播。部分论文将推荐参与“中国光学十大进展”评选。
近日,华中科技大学武汉光电国家研究中心舒学文教授团队实现了一种无模式的拉曼光纤激光器(Raman fiber laser, RFL)。无模式的拉曼光纤激光器采用传统的谐振腔结构,但是输出腔镜采用了一个超低反光纤布拉格光栅(Fiber Bragg Grating, FBG)。在较高的功率水平下,激光器输出没有分立纵模的准连续光谱。
泵浦源、增益物质和谐振腔是构成激光器的三要素。由于谐振腔对激射频率的选择作用,多纵模运转是基于传统谐振腔结构的光纤激光器的特性之一,表现为射频(Radio Frequency, RF)谱上周期性的拍频峰和时域上强度序列的周期性波动。谐振腔长决定了纵模之间的频率间隔。
然而,离散的多纵模结构为基于激光的应用带来了困扰。例如,在基于激光器的光学传感系统中,通过相移光栅等传感元件获得的单频信号峰在随温度、应变等传感参数发生频率移动时,只能在离散的纵模之间跳转而无法实现连续的频移。因此,离散的纵模限制了这类光学传感器的最高分辨率。此外,在基于硬件加密技术的保密通信中,谐振腔反馈引入的光信号的时域周期性波动会泄露激光腔的长度信息,降低保密光通信的安全性。而在基于激光强度波动的超高速随机比特序列生成中,时域强度周期波动会导致信号重复,从而弱化了生成序列的随机性。优化激光光源的输出特性以满足高速发展的科研和生产需求是一项重大而持久的挑战。
团队搭建的无模式RFL结构如图1所示。为了避免由泵浦源向拉曼激光的相对强度噪声传递,泵浦源采用研究团队自己搭建的ASE光源,中心波长1540 nm,最大输出功率10.3 W。输出光栅采用一个超低反FBG,反射率为-27 dB。
激光纵模的情况通过RF谱来反映。图2(a)显示了在不同激光输出功率下实验测量的所搭建的拉曼激光器的RF谱。在低功率水平下,RF谱上具有显著的特征峰。但随着Stokes波功率的增大,与腔长相关的周期性拍频峰逐渐展宽并且峰的高度变小。当激光输出功率达到5.71 W时,RF谱上不再有可分辨的周期性拍频峰。这意味着激光的离散多纵模将随着功率的增加而逐渐展宽,并逐渐覆盖纵模间距,最终纵模完全重叠。在这种情况下,RFL不再像传统激光器那样具有离散的纵模结构,而是产生类似于ASE光源的准连续光谱。
研究团队利用广义的非线性薛定谔方程对拉曼激光器中光场的演变进行了计算,得到的RFL的射频谱如图2(b)所示。仿真结果显示,周期性的拍频峰随着功率的增加逐渐消失,与实验测量结果基本一致。
由于无模式的拉曼光纤激光器生成准连续的光谱,将其用于光学传感系统,可以实现连续的调频,从而显著提高光学传感器的分辨率。RF谱上拍频峰的消失意味着激光辐射不再有与谐振腔长对应的时域周期性,这在保密通信、随机序列生成以及时域鬼成像领域具有巨大的应用潜力。同时,与传统激光器相比,所搭建的无模式拉曼光纤激光器具有低的相对强度噪声。这种新颖的输出特性也将为激光器的非线性现象研究提供新的平台。
该研究工作得到了国家重点研发计划项目、国家自然科学基金项目和H2020 MSCA RISE项目的资助。
由于微信公众号试行乱序推送,您可能没办法准时收到“爱光学”的文章。为了让您第一时间看到“爱光学”的新鲜推送, 请您: