半岛彩票:奥普特:广东奥普特科技股份有限公司2022年年度报

  •   股份有限公司公司代码:688686 公司简称:奥普特广东奥普特科技股份有限公司2022年年度报告

    特       价: ¥ 0
  • 咨询热线:400-666-2522

  股份有限公司公司代码:688686 公司简称:奥普特广东奥普特科技股份有限公司2022年年度报告摘要第一节重要提示1本年度报告摘要来自年度报告全文,为全面了解本公司的经营成果、财务状况及未来发展规划,投资者应当到网站仔细阅读年度报告全文。

  2重大风险提示公司已在本报告中详细阐述公司在经营过程中可能面临的各种风险及应对措施,敬请查阅本报告第三节“管理层讨论与分析”中“四、风险因素”相关内容。

  3本公司董事会、监事会及董事、监事、高级管理人员保证年度报告内容的真实性、准确性、完整性,不存在虚假记载、误导性陈述或重大遗漏,并承担个别和连带的法律责任。

  6公司上市时未盈利且尚未实现盈利□是√否 7董事会决议通过的本报告期利润分配预案或公积金转增股本预案公司2022年度利润分配预案为:拟以实施权益分派股权登记日登记的总股本为基数,向全体股东每10股派发现金红利人民币8.50元(含税)。

  8是否存在公司治理特殊安排等重要事项□适用√不适用 第二节公司基本情况1公司简介公司股票简况√适用□不适用 公司股票简况股票种类股票上市交易所及板块股票简称股票代码变更前股票简称A股上海证券交易所科创板奥普特688686不适用公司存托凭证简况□适用√不适用 联系人和联系方式联系人和联系方式董事会秘书(信息披露境内代表)证券事务代表姓名许学亮余丽办公地址广东省东莞市长安镇兴发南路66号之一广东省东莞市长安镇兴发南路66号之一电线报告期公司主要业务简介(一)主要业务、主要产品或服务情况奥普特是一家主要从事机器视觉核心软硬件产品的研发、生产和销售的高新技术企业。

  公司定位于自动化核心零部件供应商,以“打造世界一流视觉企业”为目标,致力于为下业实现自动化提供具有竞争力的产品和解决方案。

  在成立之初,以机器视觉核心部件中的光源产品为突破口,奥普特进入了当时主要为国际品牌所垄断的机器视觉市场。

  在十几年的发展过程中,公司坚持“深耕优势、以点带面、以面促点、逐个突破”的发展路径,将产品线逐步拓展至其他机器视觉部件。

  奥普特拥有完整的机器视觉核心软硬件产品,自主产品线已全面覆盖视觉算法库、智能视觉平台、深度学习(工业AI)、光源、光源、工业镜头、工业相机、智能读码器、3D传感器。

  同时,奥普特以产品核心技术为基础,建立了成像和视觉分析两大技术平台,结合多年积累的机器视觉在各下业应用的专有技术(Know-How),形成了多层次的技术体系。

  以此为基础,公司能够向下游客户提供各种机器视觉解决方案,协助客户在智能装备中实现视觉功能,提高机器视觉系统的准确性、稳定性和可靠性,从而带动公司产品的销售。

  (二)主要经营模式1.盈利模式公司依靠产品和解决方案的研发积累形成的技术体系,为客户提供具有技术附加值的机器视觉核心软硬件产品,从中取得收入、获得盈利。

  一方面公司通过包括对光学成像、图像处理、深度学习、3D视觉技术、异构计算等技术的研究,为产品研究夯实了技术基础;另一方面,公司也贴合客户需求不断研发改进既有产品,有效地满足客户需求、提升用户体验;此外,公司根据业务发展规划,结合行业发展轨迹,进行前瞻性的产品研发和布局。

  机器视觉的应用场景千变万化,在实际应用过程中,需要考虑到各种各样的因素,如被摄目标自身的大小、形状,机器视觉所在设备的自身结构、速度等,对机器视觉系统的影响,才能设计出合适、可实现应用目标的方案。

  第二个层次是从若干客户的各种具体应用场景中对解决方案进行总结研发,提炼出在一定应用场景下相对普适性的解决方案,从而向客户提供更优化、简洁、高效的产品和服务。

  第三个层次是将应用数据反馈回具体的机器视觉软硬件层面,总结出产品改进和新品开发的路线,促进产品的研发。

  3.销售模式公司的销售模式均为买断式销售,主要依托向客户提供解决方案带动产品的销售,主要客户类型包括设备制造商、设备使用方、系统集成商/贸易商等。

  而机器视觉在我国兴起和发展的时间较短,客户对于机器视觉能够实现的功能和能够达到的效果有一定的疑虑;且机器视觉功能的实现受到多种变量的影响,一套高效的机器视觉解决方案的设计需要大量的经验数据,而机器视觉的使用者往往较难积累足够的机器视觉应用经验数据库。

  通过对行业特点的分析,结合公司自身的优势,公司建立起了以向客户提供机器视觉解决方案,从而带动产品销售的业务模式。

  4.采购模式公司的对外采购主要分为两个部分:一部分是生产所需的原辅料,包括五金塑胶件、电子电器件、LED、光学件、PCB(A)、线材、接插件、包装材料等,用于生产自产产品。

  由于公司自产产品线较多,每条产品线涉及的原材料有较大差别,而公司整体规模还相对较小,因此,该部分原辅料的采购具有品种极多、单品种采购量较小等特点。

  公司结合销售订单和市场需求预测制定生产计划和发货计划,根据生产计划和发货计划制定原材料和外购成品采购计划。

  对于交付周期较长的材料和成品、一般通过销售预测确定预计使用量并联系供应商提前进行备货;对于部分生产过程中普遍适用的通用型材料和成品则维持合理的安全库存,保证生产和销售。

  5.生产模式奥普特拥有完整的机器视觉核心软硬件产品,自主产品线已全面覆盖视觉算法库、智能视觉平台、深度学习(工业AI)、光源、光源、工业镜头、工业相机、智能读码器、3D传感器。

  在这些自主生产的产品中,根据常用程度和应用范围大小进行区分,自主产品的标准化程度情况如下:(1)光源产品,包括标准产品和非标准产品,非标光源主要是在标准光源的基础上对尺寸、照度、均匀性等指标进行调整或者组合;(2)光源产品,以标准产品为主,少量非标型号是在标准产品的基础上,对某些特定指标,如电流、电压等,进行强化或者特别设定;(3)自主工业镜头、工业相机、视觉、视觉处理分析软件,均为标准产品。

  上述标准或者非标准的产品,依托公司的应用技术和向客户提供的解决方案进行组合,从而在各种各样的应用场景中,实现各异的视觉功能。

  公司采取以销定产并按照销售预测保持一定安全库存的生产备料模式,以保证生产的平稳性和交期的灵活性。

  即根据历史订单数据、下游市场情况等信息进行销售预测并确定安全库存水平,在考虑上游供货周期的基础上,以该库存水平为目标,调整生产节奏,提前排产,以便快速响应市场需求。

  (三)所处行业情况1.行业的发展阶段、基本特点、主要技术门槛公司所处行业为机器视觉行业,机器视觉率先发生和发展在基础科学和技术水平领先的北美、欧洲和日本等发达地区,在全球的发展历史不过半个多世纪。

  虽然发展时间较短,但在全球范围,以技术革新速度和工业发展之有利形势,机器视觉行业获得了快速的发展。

  我国机器视觉行业启蒙于20世纪90年代,从代理国外机器视觉产品开始,经历了启蒙阶段、初步发展阶段,目前正处于快速发展阶段。

  本世纪10年代左右,伴随我国经济的发展、工业水平的进步,特别是3C电子、新能源行业自动化的普及和深入,本土的机器视觉行业获得了空前的发展机遇。

  目前,中国已经成为全球制造业的加工中心,中国正成为世界机器视觉发展最活跃的地区之一,应用范围涵盖了包括3C电子、新能源、半导体、汽车等国民经济的各个领域。

  工业和信息化部等七部门印发《智能检测装备产业发展行动计划(2023—2025年)》,其中提出,到2025年,智能检测技术基本满足用户领域制造工艺需求,核心零部件、专用软件和整机装备供给能力显著提升,重点领域智能检测装备示范带动和规模应用成效明显,产业生态初步形成,基本满足智能制造发展需求。

  围绕机械、汽车、航空航天、电子信息、钢铁、石化、纺织、医药等行业专用检测需求,支持用户牵头,产学研用跨学科、跨领域攻关,开展基于数字模型的正向设计,融合新原理、新材料、新工艺,研制开发一批专用智能检测装备。

  GGII数据显示,从全球市场来看,2021年全球机器视觉市场规模约为804亿元,同比2020年增长12.15%,预计至2025年该市场规模将超过1200亿元。

  2022年至2025年复合增长率约为12%;从中国市场来看,2021年中国机器视觉市场规模138.16亿元(该数据未包含自动化集成设备规模),同比增长46.79%,预计至2025年我国机器视觉市场规模将达到349亿元。

  机器视觉行业属于技术密集型行业,跨越多个学科和技术领域,需要在包括成像、算法、软件、传感器等领域积累大量的技术,需要持续的大量研发投入。

  2.公司所处的行业地位分析及其变化情况公司成立于2006年,是国内较早进入机器视觉领域的企业之一。

  在发展过程中,公司注重技术的积累,奥普特拥有完整的机器视觉核心软硬件产品,自主产品线已全面覆盖视觉算法库、智能视觉平台、深度学习(工业AI)、光源、光源、工业镜头、工业相机、智能读码器、3D传感器。

  公司产品定位于中高端市场,研发、设计和生产的机器视觉产品已经成功应用于3C电子、新能源、半导体、汽车等多个领域,协助下游客户建立和增强智能制造能力,并为公司技术发展和应用经验的沉淀提供了有力保证。

  随着公司应用行业的进一步扩大以及公司面向不同行业不断推出新产品、不断提升服务能力,公司产品销售规模及市场占有率有望持续稳步扩大。

  3.报告期内新技术、新产业、新业态、新模式的发展情况和未来发展趋势报告期内,新技术和产业化应用不断提升,公司下游产业链发展势头良好,机器视觉的需求稳步增加,未来应用前景广阔。

  (1)新技术的进步极大扩展了机器视觉的应用领域和市场空间深度学习相关技术的持续进步显著提升了机器视觉技术解决工业问题的能力,加快了机器视觉向更多行业渗透的速度。

  目前主流的机器视觉技术仍采用传统方式,即首先将数据表示为一组特征,分析特征或输入模型后,输出得到预测结果,在结构化场景下定量检测具有高速、高准确率、可重复性等优势。

  深度学习对原始数据通过多步特征转换,得到更高层次、更加抽象的特征表示,并输入预测函数得到最终结果。

  深度学习可以将机器视觉的效率和鲁棒性与人类视觉的灵活性相结合,极大地拓展了机器视觉的应用场景。

  深度学习相关算法不断迭代优化,很多原来处理效果不佳或处理性能不足的机器视觉问题逐步得到较满意的结果,从而有效扩大了机器视觉技术的市场潜力。

  3D视觉技术利用3D视觉传感器采集目标对象的3D轮廓信息,形成3D点云,进而可以实现平面度、翘曲度、段差、曲面轮廓度等3D尺寸量测、3D空间中的机器人引导定位、基于3D信息的检测、识别等各种丰富的功能。

  3D视觉技术,提供了丰富的三维信息,使机器能够感知物理环境的变化,并相应地进行调整,从而在应用中提高了灵活性和实用性,扩大了机器视觉的应用场景。

  在光源技术方面,技术的发展方向包括新的光源类型、更全面的波长覆盖、创新的光源布局等;在镜头和相机方面,提供更高分辨率的产品是行业持续的发展方向和目标。

  (2)下游产业的发展带动机器视觉行业的持续增长和繁荣过去数十年来,中国制造业发展迅猛,总体规模体量已位居世界首位,但整体大而不强,产品附加值不高,处于价值链的低端,传统制造业面临严重的发展瓶颈。

  机器视觉由于在高精度尺寸测量、精确引导定位、自动化品质检测、智能化识别判断等方面的独特优。